The subgenus classification of the ubiquitously spread and potentially pathogenic acanthamoebae still poses a great challenge. Fifteen 18S rDNA sequence types (T1-T15) have been established, but the vast majority of isolates fall into sequence type T4, and so far, there is no means to reliably differentiate within T4. In this study, the first internal transcribed spacer (ITS1), a more variable region than the 18S rRNA gene, was sequenced, and the sequences of 15 different Acanthamoeba isolates were compared to reveal if ITS1 sequence variability correlates with 18S rDNA sequence typing and if the ITS1 sequencing allows a differentiation within T4. It was shown that the variability in ITS1 is tenfold higher than in the 18S rDNA, and that ITS1 clusters correlate with the 18S rDNA clusters and thus corroborate the Acanthamoeba sequence type system. Moreover, high sequence dissimilarities and distinctive microsatellite patterns could enable a more detailed differentiation within T4.