Secreted protein acidic and rich in cysteine (SPARC/osteonectin/BM-40) is a matricellular protein that functions in wound healing. Fibrinogen is a plasma protein involved in many aspects of wound healing, such as inflammation, fibrosis and thrombosis. In this study, the binding of SPARC to both native and plasmin-cleaved fibrinogen under physiological conditions was examined by the use of a surface plasmon resonance (SPR) biosensor. We show that SPARC binds to plasmin-cleaved fibrinogen, but not to native fibrinogen. SPARC binds to both fibrinogen fragments D and E fg D and fg E with similar dissociation constants (8.67 x 10(-8) M for Fg D and 1.61 x 10(-7) M for Fg E). Results from endothelial cell proliferation assays show that the binding of SPARC to Fg E suppressed the inhibition of proliferation by SPARC, whereas the binding of SPARC to Fg D did not influence the activity of SPARC on the cell cycle. The interaction of SPARC with fibrinogen fragments D and E, which are produced as a result of proteolytic activation of fibrinolysis, reveals potential storage sites in provisional extracellular matrix for SPARC during the wound healing process and indicates a regulatory role of SPARC in fibrinolysis and angiogenesis.