The complexation of Cm(III) and Eu(III) with 2,6-di(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (n-C3H7-BTP) in nonaqueous organic solution is studied with extended X-ray absorption spectroscopy. Bond lengths are the same in both complexes. Quantum-chemical calculations performed at different levels support this finding. On the other hand, the Cm.(n-C3H7-BTP)3 complex is formed at much lower ligand-to-metal concentration ratio than the Eu.(n-C3H7-BTP)3 complex, as shown by time-resolved laser-induced fluorescence spectroscopy. This is in good agreement with n-C3H7-BTP's high selectivity for trivalent actinides over lanthanides in liquid-liquid extraction.