Over the past 40 years considerable emphasis has been placed on the development of accurate and sensitive methods for the detection and quantitation of DNA adducts. The formation of DNA adducts resulting from the covalent interaction of genotoxic carcinogens with DNA, derived from exogenous and endogenous sources, either directly or following metabolic activation, can if not repaired lead to mutations in critical genes such as those involved in the regulation of cellular growth and subsequent development of cancer. The major analytical challenge has been to detect levels of DNA adducts at the level of 0.1-1 adducts per 10(8) unmodified DNA bases using only low microgram amounts of DNA, and with high specificity and accuracy, in humans exposed to genotoxic carcinogens derived from occupational, environmental, dietary and life-style sources. In this review we will highlight the merits as well as discuss the progress made by liquid chromatography coupled to electrospray ionization mass spectrometry as a method for DNA adduct detection.