The chemical sensitivity of electronic transport in carbon nanotubes under the physisorption of molecular species is investigated using a tight-binding scheme, parametrized by first-principles calculations. Such a computational method enables tackling of the complex electronic properties of chemically grafted conducting nanotubes. Our calculations demonstrate that the impact of physisorption on the transport regime critically depends on the HOMO-LUMO gap of the attached molecules. In addition, the electronic mean free path exhibits a downscaling law with a lower dependence on the coverage density of grafted molecules than for conventional substitutional doping or homogeneous disorder.