The renal dopamine receptors

J Am Soc Nephrol. 1992 Feb;2(8):1265-78. doi: 10.1681/ASN.V281265.

Abstract

Dopamine is an endogenous catecholamine that modulates many functions including behavior, movement, nerve conduction, hormone synthesis and release, blood pressure, and ion fluxes. Dopamine receptors in the brain have been classically divided into D1 and D2 subtypes, based on pharmacological data. However, molecular biology techniques have identified many more dopamine receptor subtypes. Several of the receptors cloned from the brain correspond to the classically described D1 and D2 receptors. Several D1 receptor subtypes have been cloned (D1A, D1B, and D5) and are each coupled to the stimulation of adenylyl cyclase. The D2 receptor has two isoforms, a shorter form, composed of 415 amino acids, is termed the D2short receptor. The long form, called the D2long receptor, is composed of 444 amino acids; both are coupled to the inhibition of adenylyl cyclase. The D3 and D4 receptors are closely related to, but clearly distinct from, the D2 receptor. They have not yet been linked to adenylyl cyclase activity. Outside of the central nervous system, the peripheral dopamine receptors have been classified into the DA1 and DA2 subtypes, on the basis of synaptic localization. The pharmacological properties of DA1 receptors roughly approximate those of D1 and D5 receptors, whereas those of DA2 receptors approximate those of D2 receptors. A renal dopamine receptor with some pharmacological features of the D2 receptor but not linked to adenylyl cyclase has been described in the renal cortex and inner medulla. In the inner medulla, this D2-like receptor, termed DA2k, is linked to stimulation of prostaglandin E2 production, apparently due to stimulation of phospholipase A2. Of the cloned dopamine receptors, only the mRNA of the D3 receptor has been reported in the kidney. The DA1 receptor in the kidney is associated with renal vasodilation and an increase in electrolyte excretion. The DA1-related vasodilation and inhibition of electrolyte transport is mediated by cAMP. The role of renal DA2 receptors remains to be clarified. Although DA1 and DA2 receptors may act in concert to decrease transport in the renal proximal convoluted tubule, the overall function of DA2 receptors may be actually the opposite of those noted for DA1 receptors. Dopamine has been postulated to act as an intrarenal natriuretic hormone. Moreover, an aberrant renal dopaminergic system may play a role in the pathogenesis of some forms of hypertension. A decreased renal production of dopamine and/or a defective transduction of the dopamine signal is/are present in some animal models of experimental hypertension as well as in some forms of human essential hypertension.

Publication types

  • Editorial
  • Review

MeSH terms

  • Humans
  • Hypertension, Renovascular / physiopathology
  • Kidney / chemistry
  • Kidney / physiology*
  • Natriuresis
  • Receptors, Dopamine / chemistry
  • Receptors, Dopamine / classification
  • Receptors, Dopamine / physiology*
  • Signal Transduction

Substances

  • Receptors, Dopamine