[structure: see text] A highly efficient chemoenzymatic synthesis of HIV-1 V3 domain glycopeptides carrying two N-linked core tri- and pentasaccharides was achieved. The synthesis consisted of two key steps: a solid-phase synthesis of the cyclic, 47-mer V3 domain peptide containing two GlcNAc residues and a novel endoglycosidase-catalyzed transglycosylation that simultaneously added two N-glycan moieties to the peptide precursor from the oligosaccharide oxazoline donor substrates. The availability of the synthetic glycopeptides allowed the probing of the effects of glycosylation on the HIV-1 V3 domain. It was demonstrated that glycosylation influenced the global conformations of the V3 domain and provided protection of the V3 domain against protease digestion.