Purpose: This study examined a pretarget radioimmunotherapy strategy for treatment of an i.p. tumor model (LS174T).
Experimental design: The strategy used regional administration (i.p.) of a novel targeting molecule composed of four CC49 anti-tumor-associated glycoprotein 72 (TAG-72) single-chain antibodies linked to streptavidin as a fusion protein (CC49 fusion protein); 24 hours later, a synthetic clearing agent was administered i.v. to produce hepatic clearance of unbound CC49 fusion protein/synthetic clearing agent complexes. Four hours later, a low molecular weight radiolabeled reagent composed of biotin conjugated to the chelating agent 7,10-tetra-azacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) complexed with (111)In-, (90)Y-, or (177)Lu-DOTA-biotin was injected.
Results: Radiolocalization to tumor sites was superior with i.p. administration of radiolabeled DOTA-biotin as compared with i.v. administration. Imaging and biodistribution studies showed excellent tumor localization of radioactivity with (111)In- or (177)Lu-DOTA-biotin. Tumor localization of (111)In-DOTA-biotin was 43% ID/g and 44% ID/g at 4 and 24 hours with the highest normal tissue localization in the kidney with 6% ID/g at 48 and 72 hours. Therapy studies with (90)Y-DOTA-biotin at doses of 400 to 600 microCi or (177)Lu-DOTA-biotin at doses of 600 to 800 microCi produced significant prolongation of survival compared with controls (P = 0.03 and P < 0.01).
Conclusions: Pretarget radioimmunotherapy using regional administration of CC49 fusion protein and i.p. (90)Y- or (177)Lu-DOTA-biotin represents a successful therapeutic strategy in the LS174T i.p. tumor model and this strategy may be applicable to human trials in patients with i.p. ovarian cancer.