Cyclic melanotropin peptides, designed with an aromatic amino acid substitution at the N-terminal position of the MT-II-type scaffold, were prepared by solid-phase peptide synthesis and evaluated for their ability to bind to and activate human melanocortin-1, -3, -4, and -5 receptors. The structure-activity studies of these MT-II analogues have identified a selective antagonist at the hMC4R (H-Phe-c[Asp-Pro-d-Nal(2')-Arg-Trp-Gly-Lys]-NH(2), pA(2)=8.7), a selective partial agonist at the hMC4R (H-d-Nal(2')-c[Asp-Pro-d-Phe-Arg-Trp-Gly-Lys]-NH(2), IC(50)=11nM, EC(50)=56nM), and a selective partial agonist at the hMC3R (H-d-Phe-c[Asp-Pro-d-Phe-Arg-Trp-Lys]-NH(2), IC(50)=3.7nM, EC(50)=4.9nM). Aromatic amino acid substitution at the N-terminus in conjuction with the expansion of the 23-membered cyclic lactam MT-II scaffold to a 26-membered scaffold by addition of a Gly residue in position 10 leads to melanotropin peptides with enhanced receptor selectivity.