A contiguous 111,402-nucleotide sequence corresponding to the 0 to 2.4 min region of the E. coli chromosome was determined as a first step to complete structural analysis of the genome. The resulting sequence was used to predict open reading frames and to search for sequence similarity against the PIR protein database. A number of novel genes were found whose predicted protein sequences showed significant homology with known proteins from various organisms, including several clusters of genes similar to those involved in fatty acid metabolism in bacteria (e.g., betT, baiF) and higher organisms, iron transport (sfuA, B, C) in Serratia marcescens, and symbiotic nitrogen fixation or electron transport (fixA, B, C, X) in Azorhizobium caulinodans. In addition, several genes and IS elements that had been mapped but not sequenced (e.g., leuA, B, C, D) were identified. We estimate that about 90 genes are represented in this region of the chromosome with little spacer.