Objective: High stage prostate cancers have been reported to frequently harbor chromosome 8 alterations and hypomethylation of LINE-1 retrotransposons. The potential of these parameters for molecular staging of prostate carcinoma was investigated.
Methods: High molecular weight DNA was extracted from 63 carcinoma tissues (22 pT2, 38 pT3, 3 pT4). Chromosome 8 alterations were followed by determining the ratio of NKX3.1 (at 8p21) to MYC (at 8q24) gene copy numbers (NKX3.1:MYC ratio) using a new real-time PCR technique. LINE-1 hypomethylation was quantified by Southern blot analysis.
Results: In 42 carcinomas NKX3.1 copy numbers were altered, with decreases in 32 cases. Copy numbers of MYC were increased in 38 cases and diminished in four. The NKX3.1:MYC ratio was altered in 45 specimens, with a decrease in all but two. NKX3.1 loss was associated with tumor stage (p<0.03) and MYC gain with Gleason score (p<0.03). The NKX3.1:MYC ratio was highly significantly associated with tumor stage (p<0.002), displaying 66% sensitivity and 87% specificity. LINE-1 hypomethylation was related (p<0.004) to tumor stage, but exhibited lower sensitivity (59%) and specificity (77%).
Conclusion: A straightforward PCR technique detecting chromosome 8 alterations might be useful to predict which prostate cancers are organ-confined while determination of hypomethylation appears to be somewhat less well suited.