Applying functional magnetic resonance imaging techniques, hemodynamic responses elicited by slowly flashing checkerboards (0.25 Hz) were measured both before and after a block of rapidly presented checkerboards (9 Hz -- a 'photic tetanus') was delivered. It has been shown previously, using electroencephalography, that this photic tetanus potentiates components of the visual-evoked potential. In the present study, hemodynamic responses in the extrastriate visual cortex were significantly increased to checkerboards presented at a low frequency after the administration of the photic tetanus. These results support the idea that long-term potentiation can be demonstrated non-invasively within the human visual cortex and provide evidence that the plastic changes are localized within the secondary visual cortex.