Study design: An animal model of posterolateral intertransverse process spine fusion was used.
Objectives: To investigate whether recombinant human bone morphogenetic protein-2 (rhBMP-2) can overcome the adverse effects of radiation treatment (RT) on spine fusion.
Summary of background data: Spinal metastases are common. Some of these patients are candidates for spinal cord decompression and vertebral reconstruction; however, radiation has significant adverse effects on bone healing.
Methods: A posterolateral fusion model was used with rhBMP-2 or iliac crest bone graft (ICBG). Eighty one-year-old rabbits were divided into eight groups: 1) RT 14 days before surgery, rhBMP-2; 2) RT 14 days before surgery, ICBG; 3) RT 2 days after surgery, rhBMP-2; 4) RT 2 days after surgery, ICBG; 5) RT 14 days after surgery, rhBMP-2; 6) RT 14 days after surgery, ICBG; 7) no RT, rhBMP-2; 8) no RT, ICBG. Animals were killed approximately 35 days after surgery. Manual palpation was the definitive test of fusion. Biomechanical and histologic assessments were also performed.
Results: All rhBMP-2 groups had significantly greater fusion rates versus respective ICBG control groups: 1 (86%) versus 2 (0%) (P = 0.005), 3 (100%) versus 4 (0%) (P < 0.0001), 5 (100%) versus 6 (0%) (P < 0.0001), and 7 (100%) versus 8 (60%) (P = 0.003). Stiffness and ultimate strength did not differ significantly between the experimental and control groups. Histologic assessment confirmed new bone formation in the fusion masses from rhBMP-2 groups.
Conclusions: Use of rhBMP-2 produced a significantly greater rate of fusion compared with ICBG in a previously radiated area in an animal model, without the morbidity of ICBG harvesting and without the risk of inadvertently using autograft contaminated by micrometastases.