Intramolecular recombination is a frequent event during the replication cycle of bovine herpesvirus 1 (BoHV-1). Recombinant viruses frequently arise and survive in cattle after concomitant nasal infections with two BoHV-1 mutants. The consequences of this process, related to herpesvirus evolution, have to be assessed in the context of large use of live marker vaccines based on glycoprotein E (gE) gene deletion. In natural conditions, double nasal infections by vaccine and wild-type strains are likely to occur. This situation might generate virulent recombinant viruses inducing a serological response indistinguishable from the vaccine one. This question was addressed by generating in vitro BoHV-1 recombinants deleted in the gE gene from seven wild-type BoHV-1 strains and one mutant strain deleted in the genes encoding gC and gE. In vitro growth properties were assessed by virus production, one step growth kinetics and plaque size assay. Heterogeneity in the biological properties was shown among the investigated recombinant viruses. The results demonstrated that some recombinants, in spite of their gE minus phenotype, have biological characteristics close to wild-type BoHV-1.