Expression of vascular cell adhesion molecule-1 (CD 106) in normal and neoplastic human esophageal squamous epithelium

Int J Oncol. 2006 Jan;28(1):77-85.

Abstract

Vascular cell adhesion molecule-1 (VCAM-1), a key receptor for the leukocyte-associated integrin (VLA4), is a crucial mediator of leukocyte adhesion and has co-stimulatory functions in inflammation at various organ sites. Specifically, VCAM-1/VLA4 interactions have been shown to play important roles in the setting of cutaneous immune responses, such as psoriatic lesions in humans and acute Graft-versus-Host-Disease in mice. VCAM-1 is generally expressed on activated endothelial cells in inflamed tissues, mediating endothelium-leukocyte interactions, leading to leukocyte diapedesis to the site of inflammation. We report novel and unexpected membrane expression of VCAM-1 in the basal squamous epithelial strata of the normal human esophagus and distinct patterns of epithelial expression in esophageal pathology. To further delineate the differential expression patterns of VCAM-1 in the esophageal epithelium, we examined specimens from squamous cell carcinoma (SCC), adenocarcinoma, and Barrett's columnar cell metaplasia. VCAM-1 was strongly expressed in squamous cell carcinoma, but not adenocarcinoma nor columnar epithelia in Barrett's esophagus. VCAM-1 expression was focally accentuated at sites characteristic of microscopic tumor invasion in SCC, pointing to a potential role of VCAM-1 in the development of metastasis. In addition, in vitro immunofluorescence studies using OE21 cells, an esophageal squamous epithelial cell line, displayed distinct VCAM-1 immunoreactivity confined to mitotic and dividing cells. Cell cycle arrest caused a significant decrease in VCAM-1 immunoreactivity in OE21 cells. These data suggest a previously unappreciated role for VCAM-1 in esophageal squamous epithelial homeostasis and pathology.

Publication types

  • Comparative Study

MeSH terms

  • Carcinoma, Squamous Cell / genetics*
  • Carcinoma, Squamous Cell / pathology
  • Esophageal Neoplasms / genetics*
  • Esophageal Neoplasms / pathology
  • Gene Expression Profiling
  • Homeostasis
  • Humans
  • Inflammation
  • Intestinal Mucosa / cytology
  • Intestinal Mucosa / physiology
  • Neoplasm Metastasis / genetics
  • Neoplasm Metastasis / physiopathology
  • Vascular Cell Adhesion Molecule-1 / biosynthesis*

Substances

  • Vascular Cell Adhesion Molecule-1