Induction of apoptosis by rabies virus (RV) has been reported to be associated with the expression of the glycoprotein (G), but inversely correlated with pathogenicity. To further delineate the association between the expression of the G and the induction of apoptosis, recombinant RVs with replacement of only the G gene were used to infect mice by the intracerebral route. Recombinant viruses expressing the G from attenuated viruses expressed higher level of the G and induced more apoptosis in mice than recombinant RV expressing the G from wild-type (wt) or pathogenic RV, demonstrating that it is the G gene that determines the level of G expression and, consequently, the induction of apoptosis. Likewise, recombinant viruses expressing the G from wt or pathogenic RV are more pathogenic in mice than those expressing G from attenuated RV, confirming the inverse correlation between RV pathogenicity and the induction of apoptosis. To investigate the mechanism by which induction of apoptosis attenuates viral pathogenicity, mice were infected with wt or attenuated RV by the intramuscular route. It was found that low doses of attenuated RV induced apoptosis in the spinal cord and failed to spread to the brain or produce neurological disease. On the other hand, apoptosis was not observed in the spinal cord of mice infected with the same doses of wt RV and the virus spread to various parts of the brain and induced fatal neurologic disease. These results suggest that glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system (CNS) of mice.