Learning a motor skill involves a latent process of consolidation that develops after training to enhance the skill in the absence of any practice and crucially depends on sleep. Here, we show that this latent consolidation during sleep changes the brain representation of the motor skill by reducing overall the neocortical contributions to the representation. Functional magnetic resonance brain imaging was performed during initial training and 48 h later, at retesting, on a sequential finger movement task with training followed by either a night of regular sleep or sleep deprivation. An additional night of sleep for all subjects served to rule out unspecific effects of sleep loss at retrieval testing. Posttraining sleep, but not sleep deprivation, led to improved motor skill performance at retrieval. This sleep-dependent improvement was linked to greatly reduced brain activation in prefrontal, premotor, and primary motor cortical areas, along with a stronger involvement of left parietal cortical regions. Our findings indicate that storing a motor skill during sleep reorganizes its brain representation toward enhanced efficacy.