The priming effect of LHRH in vitro (which results in increased responsiveness of gonadotropes to both LHRH receptor-mediated and receptor-independent stimuli) is brought about by an unknown mechanism. The present results indicate that induction of the LHRH priming effect is inhibited in a concentration-dependent manner by the protein kinase C (PKC) inhibitors staurosporine, K252a, H7 and by the novel highly-selective PKC inhibitor, Ro 31-8220. In contrast, a range of other compounds that are relatively selective inhibitors of other kinases such as tyrosine kinases and Ca2+/calmodulin-dependent kinases were unable to prevent priming. The PKC inhibitors prevented priming without affecting initial LHRH-induced gonadotropin secretion. Thus, the priming-elicited increment in secretion was selectively removed, restoring hormone release to the level measured during an initial response to LHRH. Similar results were obtained on different days of the estrous cycle where the magnitude of the priming effect varies. Experiments on the time course of PKC inhibitor action revealed that the critical period was in the induction of the priming effect, not its expression. The PKC inhibitors had neither acute nor delayed effects on gonadotropin secretion induced by ionomycin. Staurosporine, K252a and Ro 31-8220 inhibited LHRH priming with identical potencies to their inhibition of phorbol ester-induced gonadotropin secretion. The reduced potency of H7 seen on LHRH priming compared to phorbol ester-induced gonadotropin release parallels results seen with this inhibitor on phorbol ester-induced secretion of growth hormone (Johnson and Mitchell (1989) Biochem. Soc. Trans. 17, 751-752) and on the pharmacological characteristics of PKCs partially purified from anterior pituitary tissue. In all aspects of this study, effects on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion appeared to be entirely similar.