We describe the assembly of a cationic lipid-nucleic acid nanoparticle from a liquid monophase containing water and a water miscible organic solvent where both lipid and DNA components are separately soluble prior to their combination. Upon removal of the organic solvent, stable and homogenously sized (70-100 nm) lipid-nucleic acid nanoparticles (Genospheres) were formed. The low accessibility (<15%) of the nanoparticle-encapsulated DNA to a DNA intercalating dye indicated well-protected nucleic acids and high DNA incorporation efficiencies. It was demonstrated that Genospheres could be stably stored under a variety of conditions including a lyophilized state where no appreciable increase in particle size or DNA accessibility was observed following reconstitution. Finally, Genospheres were made target-specific by insertion of an antibody-lipopolymer (anti-HER2 scFv (F5)-PEG-DSPE) conjugate into the particle. The target specificity (>100-fold) in HER2 overexpressing SK-BR-3 breast cancer cells was dependent on the degree of PEGylation, where the incorporation of high amounts of PEG-lipid on the particle surface (up to 5 mol%) had only a minor effect on the transfection activity of the targeted Genospheres. In summary, this work describes a novel, readily scalable method for preparing highly stable immunotargeted nucleic acid delivery vehicles capable of achieving a high degree of specific transfection activity.