Direct deperturbation analysis of the A 2Pi approximately B 2Sigma+ complex of 7,6LiAr isotopomers

J Chem Phys. 2005 Nov 22;123(20):204307. doi: 10.1063/1.2125747.

Abstract

Direct deperturbation analysis of the highly accurate experimental rovibronic term values of the A (2)Pi approximately B (2)Sigma(+) complex of LiAr [R. Bruhl and D. Zimmermann, J. Chem. Phys. 114, 3035 (2001)] has been performed in the framework of inverted close-coupling approach implicitly adjusted to the unified treatment of the overall A approximately B coupling effect without reducing the rovibrational dimensionality. The nonlinear fitting procedure was supported by the ab initio calculations on the spin-orbit and angular coupling matrix elements between the lowest X (2)Sigma(+), A (2)Pi, and B (2)Sigma(+) states. The analytical grid mapping based on the reduced variable representation of the radial coordinate r was used to improve the efficiency of the solution of the close-coupling radial equations near the dissociation limit. The mutual A approximately X perturbation effect on the A (2)Pi term values and spin-rotation splitting of the ground state were evaluated for both (7,6)LiAr isotopomers. The resulting empirical potential-energy curves for the adiabatic A (2)Pi and B (2)Sigma(+) states, along with the refined r-dependent nonadiabatic matrix elements, reproduce the total rovibronic structure of the (7)LiAr complex with the standard deviation of 0.003 cm(-1). The mass invariance of the deperturbed electronic parameters was confirmed by the calculation of the rovibronic term values of the (6)LiAr isotopomer which coincided with their experimental counterparts within 0.004 cm(-1).