The injection of microspheres into the blood stream has been a common method to measure the spatial distribution of blood flow (perfusion). A technique to conduct this kind of measurement in small animal organs is presented using silver-coated microspheres with a diameter of 16 microm and high-resolution computed tomography (microCT) to detect individual microspheres. Phantom experiments demonstrate the detectability of individual spheres. The distribution of microspheres within a rat heart is given as an example. Using non-destructive, three-dimensional imaging for microsphere detection avoids the cumbersome dissection of the organ into samples or slices and their subsequent registration. The detection of individual spheres allows high-resolution measurements of perfusion and arbitrary definition of regions of interest. These, in turn, allow for accurate statistical analysis of perfusion such as relative dispersion curves.