Cigarette smoke exposure is a major determinant of adverse lung health, but the molecular processes underlying its effects on inflammation and immunity remain poorly understood. Therefore, we sought to understand whether inflammatory and host defense determinants are affected during subchronic cigarette smoke exposure. Dose-response and time course studies of lungs from Balb/c mice exposed to smoke generated from 3, 6, and 9 cigarettes/day for 4 days showed macrophage- and S100A8-positive neutrophil-rich inflammation in lung tissue and bronchoalveolar lavage (BAL) fluid, matrix metalloproteinase (MMP) and serine protease induction, sustained NF-kappaB translocation and binding, and mucus cell induction but very small numbers of CD3+CD4+ and CD3+CD8+ lymphocytes. Cigarette smoke had no effect on phospho-Akt but caused a small upregulation of phospho-Erk1/2. Activator protein-1 and phospho-p38 MAPK could not be detected. Quantitative real-time PCR showed upregulation of chemokines (macrophage inflammatory protein-2, monocyte chemoattractant protein-1), inflammatory mediators (TNF-alpha, IL-1beta), leukocyte growth and survival factors [granulocyte-macrophage colony-stimulating factor, colony-stimulating factor (CSF)-1, CSF-1 receptor], transforming growth factor-beta, matrix-degrading MMP-9 and MMP-12, and Toll-like receptor (TLR)2, broadly mirroring NF-kappaB activation. No upregulation was observed for MMP-2, urokinase-type plasminogen activator, tissue-type plasminogen activator, and TLRs 3, 4, and 9. In mouse strain comparisons the rank order of susceptibility was Balb/c > C3H/HeJ > 129SvJ > C57BL6. Partition of responses into BAL macrophages vs. lavaged lung strongly implicated macrophages in the inflammatory responses. Strikingly, except for IL-10 and MMP-12, macrophage and lung gene profiles in Balb/c and C57BL/6 mice were very similar. The response pattern we observed suggests that subchronic cigarette smoke exposure may be useful to understand pathogenic mechanisms triggered by cigarette smoke in the lungs including inflammation and alteration of host defense.