Rapamycin alleviates toxicity of different aggregate-prone proteins

Hum Mol Genet. 2006 Feb 1;15(3):433-42. doi: 10.1093/hmg/ddi458. Epub 2005 Dec 20.

Abstract

Many neurodegenerative diseases are caused by intracellular, aggregate-prone proteins, including polyglutamine-expanded huntingtin in Huntington's disease (HD) and mutant tau in fronto-temporal dementia/tauopathy. Previously, we showed that rapamycin, an autophagy inducer, enhances mutant huntingtin fragment clearance and attenuated toxicity. Here we show much wider applications for this approach. Rapamycin enhances the autophagic clearance of different proteins with long polyglutamines and a polyalanine-expanded protein, and reduces their toxicity. Rapamycin also reduces toxicity in Drosophila expressing wild-type or mutant forms of tau and these effects can be accounted for by reductions in insoluble tau. Thus, our studies suggest that the scope for rapamycin as a potential therapeutic in aggregate diseases may be much broader than HD or even polyglutamine diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy / drug effects
  • COS Cells
  • Cells, Cultured
  • Chlorocebus aethiops
  • Drosophila / genetics
  • Drosophila / metabolism
  • Huntington Disease / metabolism
  • Huntington Disease / pathology
  • Mutation / genetics
  • Peptides / genetics
  • Peptides / metabolism
  • Protein Structure, Quaternary
  • Proteins / chemistry*
  • Proteins / metabolism
  • Proteins / toxicity*
  • Sirolimus / pharmacology*
  • Trinucleotide Repeat Expansion
  • tau Proteins / genetics
  • tau Proteins / metabolism
  • tau Proteins / toxicity

Substances

  • Peptides
  • Proteins
  • tau Proteins
  • polyalanine
  • polyglutamine
  • Sirolimus