This work describes the successful micropatterning of hybrid systems consisting of hydrogel-dispersed optically active and controllable proteins on solid surfaces without degradation of the photophysical properties of the light-emitting biomolecules. It demonstrates the preservation of the luminescence properties of proteins entrapped into isolated microstructures of poly(acrylamide) gel. This way we can exploit both the structural and function-preserving properties of the hydrogels and the functionality of light-emitting proteins. We believe that this approach can open the way to the realization of nanopatterned optical memories based on photochromic biomolecules.