Fragile X syndrome is the most common form of inherited mental retardation. This X-linked disease is due to transcriptional silencing of the Fragile Mental Retardation 1 (FMR1) gene and the absence of its gene product, FMRP. This protein is an RNA-binding protein present in mRNP complexes associated with the translation machinery and is thought to be a key player in the control of mRNA transport in neurons. However, the exact role of FMRP in translation remains unclear. Two homologous proteins, FXR1P and FXR2P, are also found in RNP complexes containing FMRP, suggesting that FMRP's functions are much more complex than first thought. The molecular mechanisms altered in cells lacking FMRP still remain to be elucidated, as well as the putative roles of FXR1P and FXR2P as compensatory molecules. Here, we review the various possible functions of FMRP in RNA localization and transport in highly differentiated cells containing dendritic extensions such as neurons.