A major goal in clinical pharmacology is the quantitative prediction of drug effects. The field of pharmacokinetic-pharmacodynamic (PK/PD) modelling has made many advances from the basic concept of the dose-response relationship to extended mechanism-based models. The purpose of this article is to review, from a historical perspective, the progression of the modelling of the concentration-response relationship from the first classic models developed in the mid-1960s to some of the more sophisticated current approaches. The emphasis is on general models describing key PD relationships, such as: simple models relating drug dose or concentration in plasma to effect, biophase distribution models and in particular effect compartment models, models for indirect mechanism of action that involve primarily the modulation of endogenous factors, models for cell trafficking and transduction systems. We show the evolution of tolerance and time-variant models, non- and semi-parametric models, and briefly discuss population PK/PD modelling, together with some example of more recent and complex pharmacodynamic models for control system and nonlinear HIV-1 dynamics. We also discuss some future possible directions for PK/PD modelling, report equations for general classes of novel semi-parametric models, as well as describing two new classes, additive or set-point, of regulatory, additive feedback models in their direct and indirect action variants.