We have previously reported the synthesis and evaluation of potent anti-human immunodeficiency virus compounds based on beta-D-d4T analogues bearing a tether attached at the C-5 position and their beta-L-counterparts. Initial study revealed a requirement for an alkyl side-chain with an optimal length of 12 carbons for a weak antiviral activity. As a continuation of that work, we have now prepared the corresponding phosphoramidate derivatives as possible membrane-permeable prodrugs. Phosphorochloridate chemistry gave the target phosphoramidates which were tested for anti-human immunodeficiency virus type 1 activity; unfortunately, they were devoid of anti-HIV activity.