Structural mimicry of CD4 by a cross-reactive HIV-1 neutralizing antibody with CDR-H2 and H3 containing unique motifs

J Mol Biol. 2006 Mar 17;357(1):82-99. doi: 10.1016/j.jmb.2005.12.062. Epub 2006 Jan 9.

Abstract

Human immunodeficiency virus (HIV) entry into cells is initiated by the binding of its envelope glycoprotein (Env) gp120 to receptor CD4. Antibodies that bind to epitopes overlapping the CD4-binding site (CD4bs) on gp120 can prevent HIV entry by competing with cell-associated CD4; their ability to outcompete CD4 is a major determinant of their neutralizing potency and is proportional to their avidity. The breadth of neutralization and the likelihood of the emergence of antibody-resistant virus are critically dependent on the structure of their epitopes. Because CD4bs is highly conserved, it is reasonable to hypothesize that antibodies closely mimicking CD4 could exhibit relatively broad cross-reactivity and a high probability of preventing the emergence of resistant viruses. Previously, in a search for antibodies that mimic CD4 or the co-receptor, we identified and characterized a broadly cross-reactive HIV-neutralizing CD4bs human monoclonal antibody (hmAb), m18. Here, we describe the crystal structure of Fab m18 at 2.03 A resolution, which reveals unique conformations of heavy chain complementarity-determining regions (CDRs) 2 and 3 (H2 and H3). H2 is highly bulged and lacks cross-linking interstrand hydrogen bonds observed in all four canonical structures. H3 is 17.5 A long and rigid, forming an extended beta-sheet decorated with an alpha-turn motif bearing a phenylalanine-isoleucine fork at the apex. It shows striking similarity to the Ig CDR2-like C'C'' region of the CD4 first domain D1 that dominates the binding of CD4 to gp120. Docking simulations suggest significant similarity between the m18 epitope and the CD4bs on gp120. Fab m18 does not enhance binding of CD4-induced (CD4i) antibodies, nor does it induce CD4-independent fusion mediated by the HIV Env. Thus, vaccine immunogens based on the m18 epitope structure are unlikely to elicit antibodies that could enhance infection. The structure can also serve as a basis for the design of novel, highly efficient inhibitors of HIV entry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Amino Acid Sequence
  • Antibodies, Monoclonal / chemistry*
  • Antibodies, Monoclonal / genetics
  • Antibodies, Monoclonal / immunology
  • Binding Sites
  • CD4 Antigens / chemistry*
  • CD4 Antigens / immunology
  • Complementarity Determining Regions
  • Crystallography, X-Ray
  • Epitopes
  • HIV Antibodies / chemistry*
  • HIV Antibodies / genetics
  • HIV Antibodies / immunology
  • HIV Envelope Protein gp120 / chemistry
  • HIV Envelope Protein gp120 / metabolism
  • HIV-1 / immunology*
  • Humans
  • Hydrogen Bonding
  • Immunoglobulin Fab Fragments / chemistry
  • Immunoglobulin Fab Fragments / genetics
  • Immunoglobulin Fab Fragments / immunology
  • Models, Molecular
  • Molecular Mimicry*
  • Molecular Sequence Data
  • Protein Structure, Secondary
  • Protein Structure, Tertiary*
  • Sequence Alignment

Substances

  • Antibodies, Monoclonal
  • CD4 Antigens
  • Complementarity Determining Regions
  • Epitopes
  • HIV Antibodies
  • HIV Envelope Protein gp120
  • Immunoglobulin Fab Fragments