The eight small and complexly shaped carpal bones of the wrist articulate in six degrees of freedom with each other and to some extent with the radius and the metacarpals. With the increasing number and sophistication of studies of the carpus, a standardized definition for a coordinate system for each the carpal bones would aid in the reporting and comparison of findings. This paper presents a method for defining and constructing a coordinate system specific to each of the eight carpal bones based upon the inertial properties of the bone, derived from surface models constructed from three-dimensional (3-D) medical image volumes. Surface models from both wrists of 5 male and 5 female subjects were generated from CT image volumes in two neutral wrist positions (functional and clinical). An automated algorithm found the principal inertial axes and oriented them according to preset conditions in 85% of the bones, the remaining bones were corrected manually. Six of the eight carpal bones were significantly more extended in the functional neutral position than in the clinical neutral position. Gender had no significant effect on carpal bone posture in either wrist position. Correlations between the 3-D carpal posture and the commonly used 2-D clinical radiographic carpal angles are established. 3-D coordinate systems defined by the anatomy of the carpal bone, such as the ones presented here, are necessary to completely describe 3-D changes in the posture of the carpal bones.