Immunization with a synthetic glycan corresponding to Plasmodium falciparum glycosylphosphatidylinositols (GPIs) has been proposed as a vaccination strategy against malaria. We investigated the structural requirements for binding of naturally elicited anti-GPI antibodies to parasite GPIs. The data show that anti-GPI antibody binding requires intact GPI structures and that the antibodies are directed predominantly against GPIs with a conserved glycan structure with three mannoses and marginally against the terminal fourth mannose. The results provide valuable insight for exploiting GPIs for the development of malaria vaccines.