Metabolism and DNA binding of 5,6-dimethylchrysene in mouse skin

Chem Res Toxicol. 1992 Mar-Apr;5(2):242-7. doi: 10.1021/tx00026a015.

Abstract

5,6-Dimethylchrysene (5,6-diMeC) is a weaker tumor initiator on mouse skin than 5-methylchrysene (5-MeC). To investigate the reasons for the unexpectedly low activity of 5,6-diMeC, we have studied its metabolism and DNA binding in mouse skin, particularly with respect to metabolic activation via its anti-1,2-diol 3,4-epoxide. The metabolism of 5,6-diMeC was first examined with liver 9000g supernatant from Aroclor 1254 pretreated rats. Three major metabolites were identified as 1- or 7-hydroxy-5-(hydroxymethyl)-6-MeC, 1,2-dihydroxy-1,2-dihydro-5,6-diMeC (5,6-diMeC-1,2-diol), and 1-hydroxy-5,6-diMeC. The formation of 5,6-diMeC-1,2-diol was then assessed in mouse epidermis, following topical application of [3H]5,6-diMeC. Levels of 5,6-diMeC-1,2-diol in epidermis exceeded those of 5-MeC-1,2-diol formed from 5-MeC under similar conditions. The binding of [3H]5,6-diMeC and that of [3H]5-MeC to mouse epidermal DNA were then compared. 5,6-DiMeC-deoxyribonucleoside adducts were prepared as markers by reaction of anti- and syn-5,6-diMeC-1,2-diol 3,4-epoxide with calf thymus DNA. HPLC analysis of enzymatic hydrolysates of mouse epidermal DNA, isolated 18 h after topical treatment with [3H]5,6-diMeC or [3H]5-MeC, demonstrated the formation from [3H]5,6-diMeC of two major adducts produced by reaction of its anti-1,2-diol 3,4-epoxide with deoxyguanosine and deoxyadenosine, respectively, while the major adduct formed from [3H]5-MeC resulted from reaction with deoxyguanosine, in agreement with previous results. Total DNA binding of [3H]5-MeC as well as formation of deoxyguanosine adducts exceeded that of [3H]5,6-diMeC by 3-4-fold.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Aroclors / pharmacology
  • Biotransformation
  • Carcinogens / metabolism*
  • Carcinogens / toxicity
  • Chlorodiphenyl (54% Chlorine)
  • Chromatography, High Pressure Liquid
  • Chrysenes / chemistry
  • Chrysenes / metabolism*
  • Chrysenes / toxicity
  • DNA / metabolism*
  • Female
  • Male
  • Mice
  • Rats
  • Rats, Inbred F344
  • Skin / drug effects
  • Skin / metabolism*
  • Spectrophotometry, Ultraviolet

Substances

  • Aroclors
  • Carcinogens
  • Chrysenes
  • Chlorodiphenyl (54% Chlorine)
  • 5,6-dimethylchrysene
  • DNA