The main regulator of the human tumor suppresser gene p21(waf1/cip1) is the transcription factor p53, but more recently it has been suggested to be a primary anti-proliferative target for the nuclear receptor VDR in the presence of its ligand 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). To identify VDR responding regions, we analyzed 20 overlapping regions covering the first 7.1 kb of the p21(waf1/cip1) promoter in MCF-7 human breast cancer cells using chromatin immuno-precipitation assays (ChIP) with antibodies against p53 and VDR. We confirmed two known p53 binding regions at approximate positions -1400 and -2300 and identified a novel site at position -4500. In addition, we found three VDR-associated promoter regions at positions -2300, -4500 and -6900, i.e. two regions showed binding for both p53 and VDR. In silico screening and in vitro binding assays using recombinant and in vitro translated proteins identified five p53 binding sites within the three p53-positive promoter regions and also five 1alpha,25(OH)2D3 response elements within the three VDR-positive regions. Reporter gene assays confirmed the expected responsiveness of the respective promoter regions to the p53 inducer 5-fluorouracil and 1alpha,25(OH)2D3. Moreover, re-ChIP assays confirmed the functionality of the three 1alpha,25(OH)2D3-reponsive promoter regions by monitoring simultaneous occupancy of VDR with the co-activator proteins CBP, SRC-1 and TRAP220. Taken together, we demonstrated that the human p21((waf1/cip1)) gene is a primary 1alpha,25(OH)2D3-responding gene with at least three VDR binding promoter regions, in two of which also p53 co-localizes.