Objective: Angiogenesis is essential physiologically in growth and pathologically in tumor development, chronic inflammatory disorders, and proliferative retinopathies. Activation of protease-activated receptor 2 (PAR2) leads to a proangiogenic response, but its mechanisms have yet to be specifically described. Here, we investigated the mode of action of PAR2 in retinal angiogenesis.
Methods and results: PAR2-activating peptide, SLIGRL, increased retinal angiogenesis associated with an induction of vascular endothelial growth factor and angiopoetin-2 and most notably tie2 in the retina in vivo as well as in cultured neuroretinal endothelial cells. SLIGRL also induced release of the proinflammatory and angiogenic mediator tumor necrosis factor-alpha (TNF-alpha) via the MEK/extracellular signal-regulated kinase (ERK) (MEK/ERK) pathway in these endothelial cells. TNF-alpha, in turn, elicited tie2 expression by activating the MEK/ERK pathway. PAR2-evoked tie2 expression, endothelium proliferation (in vitro), and retinal neovascularization (in vivo) were abrogated by selective TNF-alpha blockers (neutralizing antibody infliximab and soluble TNF-alpha receptor-Fc fusion protein etanercept) as well as the MEK inhibitor PD98059.
Conclusions: The proangiogenic properties of PAR2 are intertwined with its proinflammatory effects, such that in retinal vasculature, they depend on TNF-alpha and subsequent induction of tie2 via the MEK/ERK pathway.