Feasibility of static secondary ion mass spectrometry to study physicochemical interactions between organic components and silver in thermographic systems

Rapid Commun Mass Spectrom. 2006;20(4):641-52. doi: 10.1002/rcm.2357.

Abstract

Chemical engineering of high-technology products requires elucidation of intermolecular interactions in complex materials. As part of an extensive study on thermographic systems, static secondary ion mass spectrometry (S-SIMS) was used to probe the physicochemical behaviour of active compounds, such as different tone modifiers and stabilisers, on silver. In particular, the feasibility of detecting adsorption and/or binding of individual additives and mixtures to silver was examined. Substrates prepared by sputter coating silver on silicon wafers were exposed to solutions of the studied compounds in 2-butanone. The signal intensities measured with S-SIMS for the ad-layers showed reproducibility to within 10%. Radical ions containing silver such as [M-H+Ag]+ * were used as evidence for the formation of bonds in the solid. Also the [M-H+2Ag]+ ions could be assigned to chemisorbed species while [M+Ag]+ ions could be formed by adduct ionisation of molecules with co-ejected Ag+ ions. The signal intensities of [M-H+Ag]+ * and [M-H+2Ag]+ ions were used to monitor the adsorption quantitatively as a function of time.