Many peptide hormones and neuropeptides are produced from larger, inactive precursors through endoproteolysis at sites usually marked by paired basic residues (primarily Lys-Arg and Arg-Arg), or occasionally by a monobasic residue (primarily Arg). Based upon data concerning processing of prorenin and its mutants around the native Lys-Arg cleavage site expressed in mouse pituitary AtT-20 cells, we present the following sequence rules that govern mono-arginyl cleavages: (a) a basic residue at the fourth (position -4) or the sixth (position -6) residue upstream of the cleavage site is required, (b) at position -4, Arg is more favorable than Lys, and (c) at position 1, a hydrophobic aliphatic residue is not suitable. These rules are compatible with those proposed by comparison of precursor sequences around mono-arginyl cleavage sites. We also provide evidence that precursor cleavages at mono-arginyl and dibasic sites can be catalyzed by the same Kex2-like processing endoprotease, PC1/PC3.