Improved understanding of the molecular mechanisms by which small-molecule inhibitors of histone deacetylases (HDAC) induce programs, such as cellular differentiation and apoptosis, would undoubtedly assist their clinical development as anticancer agents. As modulators of gene transcript levels, HDAC inhibitors (HDACi) typically affect only 5% to 10% of actively transcribed genes with approximately as many mRNA transcripts being up-regulated as down-regulated. Using microRNA (miRNA) array analysis, we report rapid alteration of miRNA levels in response to the potent hydroxamic acid HDACi LAQ824 in the breast cancer cell line SKBr3. Within 5 hours of exposure to a proapoptotic dose of LAQ824, significant changes were measured in 40% of the >60 different miRNA species expressed in SKBr3 cells with 22 miRNA species down-regulated and 5 miRNAs up-regulated. To explore a potential functional link between HDACi induced mRNA up-regulation and miRNA down-regulation, antisense experiments were done against miR-27a and miR-27b, both abundantly expressed and down-regulated in SKBr3 cells by LAQ824. Correlating a set of genes previously determined by cDNA array analysis to be rapidly up-regulated by LAQ824 in SKBr3 with a database of potential 3' untranslated region miRNA binding elements, two genes containing putative miR-27 anchor elements were identified as transcriptionally up-regulated following miR-27 antisense transfection, ZBTB10/RINZF, a Sp1 repressor, and RYBP/DEDAF, an apoptotic facilitator. These findings emphasize the importance of post-transcriptional mRNA regulation by HDACi in addition to their established effects on promoter-driven gene expression.