The single subunit terminal oxidase of Sulfolobus acidocaldarius, cytochrome aa3, was studied by resonance Raman spectroscopy. Results on the fully oxidized, the fully reduced, and the reduced carbon monoxide complex are reported and compared with those of eucaryotic cytochrome oxidase. It is shown that in both redox states the hemes a and a3 are in the six-coordinated low-spin and six-coordinated high-spin configuration, respectively. The resonance Raman spectra reveal far-reaching similarities of this archaebacterial with mammalian or plant enzymes except for the reduced form of heme a. The formyl substituent of this heme appears above 1640 cm-1, ruling out significant hydrogen bonding interactions which is in sharp contrast to beef heart cytochrome oxidase. In addition, frequency upshifts of the marker bands v4 and v2 are noted indicating differences in the electron density distribution within the molecular orbitals of the porphyrin.