DNA damage response is one of the essential cellular mechanisms to maintaining the genomic integrity of the cell. Aberrations in the mechanism of DNA damage response often result in cancer. We describe here RepairNET, a protein-protein interaction network associated with the DNA damage response. RepairNET is assembled from the published literature by using a protocol that involved computational data mining of the MEDLINE and manual curation. This network represents the current knowledge on the intrinsic signaling pathways related to the DNA damage response process. RepairNET currently contains more than 1,200 proteins with over 2,300 functional interactions. A number of web-interface tools have been implemented to facilitate a user-friendly environment. The users can navigate through the cellular network associated with the DNA damage response via a Java-based interactive graphical interface. In order to help users explore the functional relationships between the interacting proteins, we have assigned functional domains to the proteins in RepairNET based on their sequences. A total of 365 unique functional domains are assigned. RepairNET is available online at http://guanyin.chem.temple.edu/RepairNET.html. It could become an essential resource center for cancer research, providing clues to understanding the functional relationship between proteins in the network, and to building scientific models for the mechanism of DNA damage response and cancer proliferation.