Histone deacetylase inhibitors (HDIs) are a promising new class of antineoplastic agents with the ability to induce apoptosis and growth arrest of cancer cells. In addition, HDIs have been suggested to enhance the anticancer efficacy of other therapeutic regimens, such as ionizing radiation (IR) or chemotherapy. The objective of this study was to evaluate the activity of HDIs against medulloblastoma cells when applied either as single agents or in combination with IR, cytostatics, or TRAIL. The HDIs, suberoyl anilide hydroxamic acid (SAHA), sodium butyrate, and trichostatin A, were examined for their effects on the medulloblastoma cell lines, DAOY and UW228-2. We found that treatment with HDIs induced the dissipation of mitochondrial membrane potential, activation of caspase-9 and -3 and, consequently, apoptotic cell death. Moreover, all three HDIs significantly enhanced the cytotoxic effects of IR in DAOY cells. Likewise, treatment with SAHA markedly augmented the cytotoxicity of etoposide, while it had no effect on vincristine-mediated cell death. HDIs also potently increased the killing efficiency of TRAIL. TRAIL-induced, but not SAHA-induced, cell killing could be prevented by the caspase-8 inhibitor, z-IEDT-fmk. We conclude that HDIs may be useful for the treatment of medulloblastoma as monotherapy and particularly when given in combination with IR, appropriate cytostatics, or TRAIL.