Formation and structural anomaly of the metastable phases in an immiscible Ag-Mo system studied by ion beam mixing and molecular dynamics simulation

J Phys Chem B. 2006 Jan 12;110(1):595-606. doi: 10.1021/jp052847t.

Abstract

For the equilibrium immiscible Ag-Mo system characterized by a large positive heat of formation, the nanosized Ag-Mo multilayered samples are designed and prepared to include sufficient interfacial free energy to elevate their initial energetic states to be higher than that of either the amorphous phase or solid solution and then subject to 200 keV xenon ion irradiation. The results show that a uniform amorphous alloy can be obtained within a composition range, at least, from 25 to 88 atom % of Mo. Interestingly, in the intermediate stage of ion irradiation, a bcc phase, an amorphous phase, and an order (bcc)-disorder coexisting state appear simultaneously in the Ag12Mo88 multilayered sample and extend over the entire bright field image with unanimously homogeneous composition. In thermodynamic modeling, a Gibbs free energy diagram of the Ag-Mo system is constructed, based on Miedema's model, and suggests that within a narrow composition regime of 85-90 atom % of Mo, the energy difference between the bcc and the amorphous phases is extremely small, which is probably the very reason for the order-disorder coexisting state to appear. In atomistic modeling, an ab initio derived Ag-Mo potential is applied to perform molecular dynamics simulations. The simulations not only determine an intrinsic glass-forming ability/range (GFA/GFR) of the Ag-Mo system to be from 10 to 88 atom % of Mo but also reveal the possibility of the formation/appearance of a crystalline and amorphous mixture in a narrow composition regime of 88-92 atom % of Mo. Apparently, the theoretical results are in excellent agreement and/or compatible with the experimental observations in ion beam mixing.