We used UV resonance Raman (UVRR) spectroscopy to quantitatively correlate the peptide bond AmIII3 frequency to its Psi Ramachandran angle and to the number and types of amide hydrogen bonds at different temperatures. This information allows us to develop a family of relationships to directly estimate the Psi Ramachandran angle from measured UVRR AmIII3 frequencies for peptide bonds (PBs) with known hydrogen bonding (HB). These relationships ignore the more modest Phi Ramachandran angle dependence and allow determination of the Psi angle with a standard error of +/-8 degrees , if the HB state of a PB is known. This is normally the case if a known secondary structure motif is studied. Further, if the HB state of a PB in water is unknown, the extreme alterations in such a state could additionally bias the Psi angle by +/-6 degrees . The resulting ability to measure Psi spectroscopically will enable new incisive protein conformational studies, especially in the field of protein folding. This is because any attempt to understand reaction mechanisms requires elucidation of the relevant reaction coordinate(s). The Psi angle is precisely the reaction coordinate that determines secondary structure changes. As shown elsewhere (Mikhonin et al. J. Am. Chem. Soc. 2005, 127, 7712), this correlation can be used to determine portions of the energy landscape along the Psi reaction coordinate.