Gene delivery into human skin in vitro using biphasic lipid vesicles

Curr Drug Deliv. 2006 Jan;3(1):89-93. doi: 10.2174/156720106775197501.

Abstract

Topical gene delivery to the skin shows great potential for painless, non-invasive administration of novel vaccines and therapeutic agents. The challenge is to develop a pharmaceutically acceptable system that can deliver suitable amounts of plasmid DNA to produce the desired level of response. The purpose of this study was to quantitatively assess DNA delivery by a novel lipid-based biphasic delivery system into the viable layers of excised human skin. Biphasic lipid vesicle formulations, incorporating plasmid DNA were evaluated in vitro in flow-through diffusion cells. Fifty mg DNA formulation containing 10 microg DNA was applied to full-thickness human breast skin for 24 hours. Residual formulation was removed and the skin was washed with PBS, then tape-stripped, followed by DNase treatment to remove surface bound DNA. Skin samples were homogenised and digested overnight with Proteinase K. The resulting supernatant was used as a template for quantitative PCR. Three formulations yielded a significant degree of dermal absorption compared to the controls. Formulation 26-3-2-DNA indicated that approximately 1x10(9) copies of plasmid were absorbed per cm2 skin. Other formulations resulted in 5x10(6) copies/cm2 skin (17C3-1-DNA) and 5x10(8) copies/cm2 skin (26-3-1-DNA). Biphasic vesicles delivered significant quantities of plasmid DNA into the 'viable' layers of human skin in vitro. The successful delivery of this large (approximately 4,400 kDa) charged molecule through intact stratum corneum represents a major advance in transdermal macromolecule delivery.

MeSH terms

  • Administration, Cutaneous
  • DNA / genetics
  • DNA / metabolism*
  • Gene Transfer Techniques*
  • Genetic Therapy
  • Humans
  • In Vitro Techniques
  • Liposomes
  • Plasmids / genetics
  • Polymerase Chain Reaction
  • Skin / metabolism*

Substances

  • Liposomes
  • DNA