The "four Rs" of radiobiology play an important role in the design of radiation therapy treatment protocol. The purpose of this work is to explore their influence on external beam radiotherapy for fast and slowly proliferating tumors and develop an optimization framework for tumor-biology specific dose-time-fractionation scheme. The linear quadratic model is used to describe radiation response of tumor, in which the time dependence of sublethal damage repair and the redistribution and reoxygenation effects are included. The optimum radiotherapeutic strategy is defined as the treatment scheme that maximizes tumor biologically effective dose (BED) while keeping normal tissue BED constant. The influence of different model parameters on total dose, overall treatment time, fraction size, and intervals is also studied. The results showed that, for fast proliferating tumors, the optimum overall time is similar to the assumed kickoff time T(k) and almost independent of interval patterns. Significant increase in tumor control can be achieved using accelerated schemes for the tumors with doubling time smaller than 3 days, but little is gained for those with doubling time greater than 5 days. The incomplete repair of normal tissues between two consecutive fractions in standard fractionation has almost no influence on the fractional doses, even for the hyperfractionation with an interval time of 8 h. However, when the resensitization effect is included, the fractional doses at the beginning and end of each irradiated week become obviously higher than others in the optimum scheme and the hyperfractionation scheme has little advantage over the standard or hypofractionation one. For slowly proliferating tumors, provided that the alpha/beta ratio of the tumor is comparable to that of the normal tissues, a hypofractionation is more favorable. The overall treatment time should be larger than a minimum, which is predominantly determined by the resensitization time. The proposed technique provides a useful tool to systematically optimize radiotherapy for fast and slow proliferating tumors and sheds important insight into the complex problem of dose-time fractionation.