Fragmentation mechanisms of protonated chalcone and its derivatives with different functional groups were investigated by atmospheric pressure chemical ionization with tandem mass spectrometry (MS/MS). The major fragmentation pathways were loss of the phenyl group from the A or B ring, combined with loss of CO. Losses of H(2)O and CO from the precursor ions of [M+H](+) are proposed to occur via rearrangements. Elimination of water from protonated chalcones was observed in all the title compounds to yield a stable ion but it was difficult to obtain skeletal fragmentation of a precursor ion. Loss of CO was found in the MS/MS spectra of all the compounds except the nitro-substituted chalcones. When the [M+H--CO](+) ion was fragmented in the MS/MS experiments, there were distinctive losses of 15 and 28 Da, as the methyl radical and ethylene, respectively. The ion at m/z 130, found only in the nitro-substituted chalcones, was assigned as C(9)H(6)O by Fourier transform ion cyclotron resonance (FTICR)-MS/MS; m/z 130 is a common fragment ion in the electron ionization (EI) spectra of chalcones. In order to more easily distinguish the constitutional isomers of these chalcones, breakdown curves were produced and these provided strong support in this study.
Copyright (c) 2006 John Wiley & Sons, Ltd.