Prenatal cocaine exposure induces alterations in attentional function that presumably involve locus coeruleus noradrenergic neurons and their projections. Previous reports indicate that embryonic rat locus coeruleus neurons exposed to cocaine, both in vitro and in vivo, showed in decreased cell survival and inhibition of neurite outgrowth, and that the effects were most deleterious during early gestation. The present study performed in vitro addressed the specificity of the inhibitory effects of cocaine by comparing locus coeruleus neurite formation and extension to that of dopaminergic substantia nigra neurons following exposure to a physiologically-relevant dose of cocaine (500 ng/ml, two times a day, for four days) during peak neuritogenesis. Following cocaine treatment, immunocytochemistry (anti-norepinephrine antibody to locus coeruleus; anti-tyrosine hydroxylase antibody to substantia nigra) and image analysis were performed to measure a variety of neurite outgrowth parameters. For locus coeruleus neurons, cocaine treatment decreased the 1) number of cells initiating neurites [P<0.001], 2) mean number [P<0.05] and length of neurites [P<0.0001], 3) mean number [P<0.0016] and length of branched neurites [P<0.0006], and 4) mean length of the longest neurites [P<0.0001]. In comparison, substantia nigra neurons were not significantly affected by cocaine for any of the parameters examined. More importantly, a significant interaction between cocaine treatment and brain region was observed [P<0.0002] indicating greater vulnerability of locus coeruleus, relative to substantia nigra neurons, to cocaine exposure. These data support our hypothesis that cocaine targets the noradrenergic system by negatively regulating locus coeruleus neuronal outgrowth, which likely affects pathfinding, synaptic connectivity, and ultimately attentional behavior in cocaine-exposed offspring.