Release of arsenic to the environment from CCA-treated wood. 2. Leaching and speciation during disposal

Environ Sci Technol. 2006 Feb 1;40(3):994-9. doi: 10.1021/es051471u.

Abstract

Wood treated with chromated copper arsenate (CCA) is primarily disposed within construction and demolition (C&D) debris landfills, with wood monofills and municipal solid waste (MSW) landfills as alternative disposal options. This study evaluated the extent and speciation of arsenic leaching from landfills containing CCA-treated wood. In control lysimeters where untreated wood was used, dimethylarsinic acid (DMAA) represented the major arsenic species. The dominant arsenic species differed in the lysimeters containing CCA-treated wood, with As(V) greatest in the monofill and C&D lysimeters and As(III) greatest in the MSW lysimeters. In CCA-containing lysimeters, the organoarsenic species monomethylarsonic acid (MMAA) and DMAAwere virtually absent in the monofill lysimeter and observed in the C&D and MSW lysimeters. Overall arsenic leaching rate varied for the wood monofill (0.69% per meter of water added), C&D (0.36% per m), and MSW (0.84% per m) lysimeters. Utilizing these rates with annual disposal data, a mathematical model was developed to quantify arsenic leaching from CCA-treated wood disposed to Florida landfills. Model findings showed between 20 and 50 t of arsenic (depending on lysimeter type) had leached prior to 2000 with an expected increase between 350 and 830 t by 2040. Groundwater analysis from 21 Florida C&D landfills suspected of accepting CCA-treated wood showed that groundwater at 3 landfills was characterized by elevated arsenic concentrations with only 1 showing impacts from the C&D waste. The slow release of arsenic from disposed treated wood may account for the lack of significant impact to groundwater near most C&D facilities at this time. However, greater impacts are anticipated in the future given that the maximum releases of arsenic are expected by the year 2100.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arsenates / chemistry*
  • Arsenic / analysis
  • Arsenic / chemistry*
  • Environmental Monitoring
  • Models, Theoretical
  • Refuse Disposal*
  • Risk Assessment
  • Soil Pollutants / analysis
  • Solubility
  • Water Pollutants / analysis
  • Wood*

Substances

  • Arsenates
  • Soil Pollutants
  • Water Pollutants
  • chromated copper arsenate
  • Arsenic