Lipoproteins from gram-positive and -negative bacteria, mycoplasma, and shorter synthetic lipopeptide analogues activate cells of the innate immune system via the Toll-like receptor TLR2/TLR1 or TLR2/TLR6 heterodimers. For this reason, these compounds constitute highly active adjuvants for vaccines either admixed or covalently linked. The lanthionine scaffold has structural similarity with the S-(2,3-dihydroxypropyl)cysteine core structure of the lipopeptides. Therefore, lanthionine-based lipopeptide amides were synthesized and probed for activity as potential TLR2 agonists or antagonists. A collection of analytically defined lipolanthionine peptide amides exhibited an inhibitory effect of the TLR2-mediated IL-8 secretion when applied in high molar excess to the agonistic synthetic lipopeptide Pam3Cys-Ser-(Lys)4-OH. Structure-activity relationships revealed the influence of the chirality of the two alpha-carbon atoms, the chain lengths of the attached fatty acids and fatty amines, and the oxidation level of the sulfur atom on the inhibitory activity of the lipolanthionine peptide amides.