Objective: Characterization of the early establishment of the viral reservoir in patients acquiring resistant strains at primary HIV-1 infection (PHI), and longitudinal analysis of resistance mutations in circulating virions and intracellular HIV strains.
Patients and methods: Drug-resistance was compared between HIV RNA and peripheral blood mononuclear cell (PBMC)-HIV DNA at the time of PHI in 44 patients enrolled in the Primo Cohort and harbouring plasma HIV-1 resistant to at least one antiretroviral drug. Longitudinal monitoring of viral load and resistance genotype was performed in plasma-HIV RNA and PBMC HIV DNA for at least 24 months in a subset of 10 patients. Phylogenetic analysis of HIV DNA protease gene clones was used to explore the diversity of quasi-species at baseline.
Results: Baseline resistance profile was identical in paired HIV RNA and PBMC HIV DNA for all 44 patients. All resistance-associated mutations persisted in plasma and PBMC over 2 years in the five untreated patients. Of the five patients started on empirical HAART, two achieved undetectable HIV RNA at month 6, with long-term persistence of archived drug-resistance mutations in PBMC HIV DNA. Virological failure was observed in the other three patients, resulting in the accumulation of additional drug-resistance mutations in HIV RNA and HIV DNA for two of them. Phylogenetic analysis of HIV DNA clones showed highly homogenous and exclusively resistant quasi-species in the cellular reservoir at baseline.
Conclusion: HIV resistant strains acquired at the time of PHI massively fuel the cellular reservoir, and their prolonged persistence is supported by the early expansion of a dominant homogenous and resistant viral population. Results in treated patients showed that classical empirical triple-combination may be suboptimal.