Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles

Biomacromolecules. 2006 Mar;7(3):829-35. doi: 10.1021/bm050902y.

Abstract

The objective of these investigations was to test the hypothesis that a rapid cytoplasmic release profile from nanoparticles would potentiate the anticancer activity of cisplatin. Cisplatin-loaded nanoparticles with pH-responsive poly[2-(N,N-diethylamino)ethyl methacrylate] (PDEA) cores were synthesized from PDEA-block-poly(ethylene glycol) (PDEA-PEG) copolymer by using a solvent-displacement (acetone-water) method. Nanoparticles with pH-nonresponsive poly(epsilon-caprolactone) (PCL) cores made from PCL-block-PEG (PCL-PEG) were used for comparison. Nanoparticle sizes, zeta potentials, drug-loading capacities, and pH responsiveness were characterized. The cellular uptakes and localization in lysosomes were visualized by using confocal fluorescence microscopy. Cytostatic effects of free and encapsulated cis-diammineplatinum(II) dichloride (cisplatin) toward human SKOV-3 epithelial ovarian cancer cells were estimated by using the MTT assay. Intraperitoneal tumor responses to cisplatin and cisplatin/PDEA-PEG were evaluated in athymic mice at 4-6 weeks postinoculation of SKOV-3 cells. PDEA-PEG nanoparticles dissolved at pH < 6 and rapidly internalized and transferred to lysosomes; it therefore was predicted that the PDEA nanoparticles would rapidly release cisplatin into cytoplasm upon integration into acidic lysosomes and thereby overwhelm the chemoresistant properties of SKOV-3 cells. Indeed, relative proportions of viable cells were diminished to a greater extent by exposure in vitro to fast-releasing nanoparticles compared to slow-releasing nanoparticles or an equivalent dose of free cisplatin. Incidences of cellular pyknosis (a morphological indicator of apoptosis) were most evident within intestinal/mesentery tumors of mice treated with cisplatin/PDEA-PEG; tumor burdens were correspondingly reduced.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cisplatin / administration & dosage
  • Cisplatin / pharmacology*
  • Drug Delivery Systems*
  • Female
  • Humans
  • Methacrylates / chemistry
  • Mice
  • Nanostructures / chemistry*
  • Neoplasm Transplantation
  • Neoplasms / drug therapy*
  • Nylons / chemistry
  • Polyesters / chemistry
  • Polyethylene Glycols / chemistry

Substances

  • Antineoplastic Agents
  • Methacrylates
  • Nylons
  • Polyesters
  • poly(2-(diethylamino)ethyl methacrylate)
  • polycaprolactone
  • Polyethylene Glycols
  • Cisplatin