Eukaryotes contain numerous transposable or mobile elements capable of parasite-like proliferation in the host genome. All known transposable elements in eukaryotes belong to two types: retrotransposons and DNA transposons. Here we report a previously uncharacterized class of DNA transposons called Polintons that populate genomes of protists, fungi, and animals, including entamoeba, soybean rust, hydra, sea anemone, nematodes, fruit flies, beetle, sea urchin, sea squirt, fish, lizard, frog, and chicken. Polintons from all these species are characterized by a unique set of proteins necessary for their transposition, including a protein-primed DNA polymerase B, retroviral integrase, cysteine protease, and ATPase. In addition, Polintons are characterized by 6-bp target site duplications, terminal-inverted repeats that are several hundred nucleotides long, and 5'-AG and TC-3' termini. Analogously to known transposable elements, Polintons exist as autonomous and nonautonomous elements. Our data suggest that Polintons have evolved from a linear plasmid that acquired a retroviral integrase at least 1 billion years ago. According to the model of Polinton transposition proposed here, a Polinton DNA molecule excised from the genome serves as a template for extrachromosomal synthesis of its double-stranded DNA copy by the Polinton-encoded DNA polymerase and is inserted back into genome by its integrase.